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Vortex pairing in a circular jet under controlled excitation. 
Part 2. Coherent structure dynamics 

By A.K. M.F. HUSSAIN AND K.B. M. Q.ZAMAN 
Department of Mechanical Engineering, University of Houston, Texas 77004 

(Received 5 April 1979 and in revised form 20 February 1980) 

The coherent structure dynamics in the near field of a circular jet has been experi- 
mentally explored by inducing ‘ stable ’ vortex pairing through controlled excitation 
(see Zaman & Hussain 1980) and applying phase-averaging techniques. Hot-wire 
measurements were made in a 7.62 cm air jet with laminar exit boundary layer a t  the 
Reynolds number ReD = 3.2 x lo4, excited a t  the Strouhal number 8 t D  = 0.85. At a 
particular phase during the pairing process, spatial distributions of the phase-average 
longitudinal and lateral velocity perturbations ((u), (v)), vorticity, streamlines, the 
coherent and background Reynolds stresses and turbulence intensities have been 
educed. These data have been obtained for four different locations occupied by the 
vortices at  the same phase (preceding, during, and following the pairing event), in the 
region 0 < x / D  < 5. Spatial distributions of these measures a t  four successive phases 
during the pairing process are also educed in an attempt to further understand the 
vortex-pairing dynamics. The flow physics is discussed on the basis of measurements 
over the physical extent of the vortical structures, phase-locked to specific phases of 
the pairing event and thus do not involve use of the Taylor hypothesis. 

The computed pseudostream functions a t  particular phases are compared with the 
corresponding etreamlines drawn by the method of isoclines. Transition of the vortices 
is examined on the basis of vorticity diffusion, the superimposed random fluctuation 
field intensities and Reynolds stress and phase-locked circumferential correlation 
measurements. The peak vorticity drops rapidly owing to transition and interaction 
of the vortices during pairing but, farther downstream, the decay can be attributed to 
destruction of the coherent vorticity by the background turbulence Reynolds stress, 
especially a t  the locations of the latter’s ‘saddle points ’. Controlled excitation enhances 
the initial circumferential coherence of the vortical structures, but is ineffective in 
delaying turbulent breakdown near the end of the potential core; the breakdown 
appears to occur through evolution of the circumferential lobe structures. The coherent 
structure Reynolds stress is found to be much larger than the background turbulence 
Reynolds stress for 0 < x / D  6 3, but these two are comparable near the end of the jet 
potential core. The zone average of the coherent structure Reynolds stress over the 
cross-section of the merging vortex pair is much larger than that over a single vortical 
structure either before or after the completion of pairing. During the pairing process, 
such average correlations are found to be the largest a t  an early phase of the process 
while entrainment, turbulent breakdown 8s well as rapid diffusion of vorticity occur 
at  a later phase. The regions of alternate positive and negative coherent Reynolds 
stresses associated with the structures and their interactions help explain ‘negative 
production ’. 
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1. Background 
The discovery of the quasi-deterministic structures in flows that otherwise would 

be characterized as fully turbulent (Brown & Roshko 1974; Winant & Browand 1974) 
have engendered widespread enthusiasm among researchers based upon the expecta- 
tion that knowledge of the coherent structures may be crucial to the understanding and 
modelling of shear-flow turbulence. 

The large-scale coherent structures in the near-fields of three circular air jets were 
experimentally investigated by organizing these structures through controlled acoustic 
excitation, induced in the jet via cavity resonance produced by a loudspeaker attached 
to the settling chamber. The response of the jet to excitation as a function of the 
Strouhal number and the Reynolds number was studied for both initially laminar and 
tripped boundary layers by Zaman & Hussain (1980; hereinafter referred to as I). It 
was shown that vortex pairing in the jet can be stabilized or suppressed depending on 
the Strouhal number. The present paper discusses the detailed field measurements 
associated with the near-field coherent structures under the conditions of stable vortex 
pairing. 

There have been two alternative approaches to studying the large-scale coherent 
structures. One is to detect the naturally occurring structures through some form of 
conditional sampling and to obtain an ensemble average to deduce their characteristics 
(Kovasznay, Kibens & Blackwelder 1970; Lau & Fisher 1975; Browand & Wiedman 
1976; Bruun 1977; Yule 1978). While this approach is more relevant to the practical 
flow, it suffers from some constraints. First, since the data acquisition and analysis 
must follow detection, signals should either be recorded or, when analysing real time, 
the signal must be delayed without distortion. Secondly, because of the dispersion in 
shape, size, orientation, strength, and convection velocity, successive realizations do 
not capture the same cross-section of the structure; choice of a multiple-sensor probe 
may significantly alleviate this problem. Thirdly, the eduction is dependent on a sub- 
jectively determined detection scheme; this introduces not only a judgement factor, 
but also the possibility that different detection schemes may produce different 
descriptions of the same structure. The educed structure and its convection velocity in 
a mixing layer depend on whether the positive or negative spikes in t,he u signal are 
used for the detection (Bruun 1977). The structure interactions like pairing or tearing, 
which occur randomly, further complicate eduction and interpretation of the coherent 
structure dynamics. Fourthly, such eduction of the naturally occurring structures 
would be prohibitively time-consuming. 

The alternative approach is to induce a periodic perturbation in the flow and use the 
period as a clock for detection of the structure. The eneemble average at a particular 
phase a t  a station gives the phase average of the structure. Even though the question 
arises as to whether the induced structure truly resembles the naturally occurring 
structure or not, this approach is highly atkactive and has been followed rather 
successfully in a number of investigations (Hussain & Reynolds 1970; Crow & 
Champagne 1971 ; Wygnanski, Sokolov & Friedman 1976; Zilberman, Wygnanski & 
Kaplan 1977; Cantwell, Coles & Dimotakis 1978; Cantwell & Coles 1978, private 
communication; Hussain & Thompson 1980; Sokolov et al. 1980). This approach has 
been the basis of the present investigation. 

Application of the phase-averaging technique to study the vortex-pairing 
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phenomenon was rendered possible by our earlier success in inducing ‘stable ’ vortex 
pairing (Hussain & Zaman 1975). As discussed in I, even under excitation, the pairing 
phenomenon can occur at random in space and time as is the case in an unperturbed 
flow. Only under specific excitation condit.ions, ‘stable ’ vortex pairing can be induced 
when, at  a given spatial location, the same phase of the pairing event can be captured 
at periodic intervals, except for some unavoidable jitter. Thus, an ensemble average of 
the data at a particular phase will reveal the dynamics of the event at that phase. 
For a typical ‘ stable ’ vortex pairing in the ‘ jet-column mode ’ (see I), the spatial distri- 
butions of phase-average properties at  different phases of the pairing event as well as 
in regions preceding and following the pairing location are discussed in the following. 
These data reveal heretofore unreported aspects of the coherent vortical structures 
and pairing in the axisymmetric mixing layer. 

For descriptions of the flow facility and instrumentation, documentation of the 
exit and jet flow characteristics in the absence of the perturbation, and further details, 
see I. 

2. Procedures 
2.1. Phase average and consequences 

The eduction of the coherent structure signature as well as interpretation of the data 
require introduction of the concept of phase average (Hussain & Reynolds 1970; 
Hussain 1977) and its consequences like coherent Reynolds stress vs. background 
Reynolds stress. One can regard any instantaneous flow variable f to consist of the 
contributions from the global (time) mean fieldf, the (periodic) coherent fieldrand the 
background turbulent (fluctuation) field f ’, i.e. 

where 

If we use angle brackets to denote the phase average at  a particular time t in the period 
T of the periodic perturbation, then 

1 N  {f(x,t)) = lim - 2 f ( x , t + n T ) ,  
N - m N , = I  

( 2 . 2 b )  

so that (f) = f+f. The difference between the instantaneous signal and the phase 
average represents the background random fluctua.tion, and the difference between 
the phase average and the time average denotes the (periodic) coherent component. 
Thus, knowing the period of the induced perturbat,ion, the mean, coherent and random 
components of the signal can be extracted from the instantaneous total signal. 

A few consequences of the time- and phase-averaging schemes follow: 

(f ’> = J’ = f = 0; <fg> = R g ) ;  <f9> = m; (fig’> = 5 = 0- ( 2 . 3 )  

The last two equations state that, on average, periodic and random components are 
uncorrelated. 
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Substitution of the decomposition (2.1) into the incompressible continuity and 
momentum balance equations gives 

( 2 . 5 ~ )  

where D/Dt = a/at + iij a/axj is the material derivative in the time-mean flow field. 
Thus, the time-mean Reynolds stress consists of two parts, one contributed by the 
(periodic) coherent part and one by the (random) background turbulence. Since only 
the coherent part of the motion is assumed periodic, it is reasonable to call {CiCj) the 
phase average of the coherent structure Reynolds stress and (u;ui)  the phase-average 
background Reynolds stress. For additional equations and detailed discussion of the 
flow physics, see Reynolds & Hussain (1972) and Hussain (1977). 

The decomposition (2.1) assumes the coherent structure to be a perturbation super- 
imposed on the mean flow field. However, a t  the location of a structure, the flow is 
essentially due to the structure. Consequently, it  is probably more appropriate to view 
the flow field from the coherent structure field. (For the continuity, momentum and 
energy equations for the coherent and background turbulent motions and detailed 
discussion of the flow physics viewed this way, see Hussain 1977.) 

For convenience, let us use f to denote the instantaneous variable f, f p  its periodic 
part, f, its random part and f’ the r.m.8. values off. Thus, 

q x ,  t )  = U(x) 4- up(x, t )  + u,(x, t ) ;  qx, t )  = V(x) + vp(x, t )  + v,(x, t ) .  

Also, (G) = U + up will be denoted by ( u )  and ( B )  = V + up by (v). Note that 

((6- U}{Z-  V } )  = (uv)  = (u,up)+{urv,) (2.6) 

since (u,vp) and (u,v,.) are zero according to the last relation in (2.3). Thus, (u,~,) 
represents the phase average of the Reynolds stress due to the large-scale coherent 
motions, and (u,v,) that due to the background turbulence. Note that (2.6) does not 
include the total momentum transport a t  any phase since Uv, +up V also represent 
the phase-average transport of mean momenta by the coherent structure (equation 
(2 .5b ) ) .  Note also that the last two relations in (2.3) do not suggest that the coherent 
field and the background turbulent field are unrelated. The quantity (u,v,) represents 
the effect of the coherent structure on the background turbulence field. However, this 
effect of the coherent structure is indirect in the sense that the periodic modulation 
does not directly contribute to {up) ,  {v,), (u,v,), etc. since the time scale of the 
coherent structure is much larger than that of the background turbulent fluctuations. 

2.2 .  Data acquisition and reduction 

Data presented in this paper cover spatial distributions of U ,  7, ( u ) ,  (v), ( u p v p ) ,  
(u,v,) as well as (u;)b, (v;)* (the phase-average intensities of u,(t) and v,(t)); the last 
two being defined as 

1 N  
(2.7) I” lim - f f (x , t+nT) . 

N+W N n = l  
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FIGURE 1. Schematic diagram of the jet coherent structure and instrumentation. 

Phase-average measurements were carried out a t  a large number of spatial points in 
a selected ‘region ’ on the radial (x, y) plane, thus providing a spatial distribution of the 
variable in the region at a particular phase. The phase was chosen to  capture a selected 
phase of the vortex-pairing event. A schematic diagram of the flow situation and the 
relative vortex locations a t  the chosen phase are shown in figure 1. Also shown are the 
reference (single-wire) and the measurement (X-wire) probes, instrumentation and 
co-ordinates (see also figure 1 in I). 

The phase-average data a t  any grid location were acquired on-line with the labora- 
tory minicomputer system (HP 2100s). The signals .ii(t), v”(t) and G ( t )  were sampled by 
the computer a t  desired phases. These signals were obtained from a turbulence 
processor (DISA Model 52B25) which decomposes the two ax.-coupled signals from 
linearized DISA constant-temperature anemometers operating the X-wire. Averages 
over a large number of samples (typically 1920 samples) gave the different phase- 
average quantities as functions of (z, y) in each flow ‘region’ (see § 2.3). 

(a )  Triggering procedures. In  the presence of stable vortex pairing, the centre-line 
velocity signal in the potential core in the region of vortex pairing is periodic a t  half of 
the excitation frequency f’ (see I) .  The output of the reference probe located on the 
jet centre-line a t  x / D  z 1.5, band-pass filtered a t  the pairing frequency, provided the 
reference signal which activated a triggering device. The output of the triggering 
device was a pulsed output signal (the triggering signal) of frequency if, = 35Hz. 
When the reference signal exceeded a set threshold level with positive slope, the output 
from the triggering device jumped to a high level and remained there for an adjustable 
time before dropping to zero. The a( t )  signal from the X-wire showed zero-crossing with 
a large positive slope a t  the instant when the vortex centre was a t  the X-wire. By 
choosing the ‘dwell’ time, the time delay T between the instant for trigger signal drop 
and the instant for vortex centre passage could be changed and thus a desired phase 
for data sampling could be chosen. At the instants the triggering signal dropped from 
the high level to zero, the analog-to-digital converter was activated to sample the 
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appropriate signals. At each trigger, the three signals were sequentially sampled a t  
25 kHz and thus the three data could be regarded as simultaneous. 

(b)  Vorticity computation and other considerations. A self-convergent criterion was 
used for acquisition of the phase-locked data to avoid prohibitively long experiment 
times while simultaneously limiting the data scatter within acceptable bounds. For the 
contour plots to be discussed later, a data-smoothing scheme was incorporated using 
a dynamic least-squares fit technique - the same scheme was also used to compute the 
z component of the phase-average vorticity ~ J x ,  y ;  t )  = s2 from the (u) (x, y )  and 
(v) (x, y )  arrays. The uncertainty bounds in the (u) /U,  and (v ) /U,  data are estimated 
to be about 5 %. 

For further details of the data acquisition, triggering device, error estimates and 
data-smoothing techniques, see Zaman (1978). 

2.3. Choice of the measurement regions 
Even though the controlled excitation organizes and stabilizes the vortex-pairing 
phenomenon, quantitative measurements of the near-field coherent structure are not 
free from ambiguity. The comparatively straightforward approach of using a stationary 
probe and educing the coherent structure signature from the velocity signals by 
ensemble averaging has been followed by investigators of coherent structures (Coles & 
Barker 1975; Wygnanski et al. 1976; Zilberman et al. 1977; Browand & Wiedman 1976; 
Yule 1978), but this approach suffers from the limitation that data associated with 
different spatial points of the structure are captured a t  different times. To obtain a 
physical description of the structure in the (2, y) plane from the datain ( t ,  y ) ,  one must 
invoke the Taylor hypothesis whose applicability to turbulent shear flows in general 
and to the large-scale coherent structures in particular is questionable. In  the latter 
case, a t  least two major limitations of the Taylor hypothesis, namely, low shear and 
small fluctuation intensity, are violated (Lin 1953). Consider that  u'(x', t ' )  is the 
streamwise velocity when viewed from a reference frame (x ' ,  t ' )  convected downstream 
with a velocity U,, then 

( 2 . 8 ~ )  
Since at'/at = 1, 

x' = 2-  v e t ;  u'(x', t ' )  = u(x, t )  - v,. 

(2.8b) 

Thus, if an observer moving with the convected frame sees insignificant change of the 
coherent structure, which is a reasonable assumption for short time intervals, the 
second term on the right-hand side of (2 .8b )  is negligible, and 

Clearly, even if V, is used for the transformation of temporal gradients to spatial 
gradients, the variation of the convection velocity U, in time and space, together with 
the continuous distortion and rotation of the structure, would frustrate any effort to 
understand clearly the coherent structure dynamics. It was thus felt that a true 
spatial distribution of the structure-induced mot,ion was necessary. Since by controlled 
excitation the structure could be induced to occur periodically at specified locations, 
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FIGURE 2. The measurement ‘regions’ I-VII. The number of spatial 
grids in (2, y) in each region is indicated. 

it was possible to obtain the phase-average property a t  a point using a single probe. By 
changing the probe location and repeating phase-average measurements locked to the 
same phase of the event, the actual spatial distribution of a flow property in the 
(2, y) plane at one instant could be directly obtained without involving the Taylor 
hypothesis. Thus this alternative, albeit far more arduous, route of obtaining the 
spatial details of the larger-scale coherent structure was chosen. 

Such spatial measurements could be taken a t  different times (i.e. phases) during the 
evolution of the coherent structure. It was decided to carry out the measurements 
within the axisymmetric mixing layer up to the end of the potential core a t  one par ti- 
cular phase of the excitation. Within this length, the structure would typically be 
captured a t  three to four locations a t  any phase of the excitation. Deciding on the 
phase for flow documentation was clearly arbitrary. 

The phase chosen was such that the two pairing vortex rings are in the middle of 
their pairing process, more specifically, in the same diametral plane. This choice, 
though arbitrary, was partly motivated by the fact that a t  this phase the two pairing 
vortices were in their most intense relative motion (see I) and by the observation based 
on flow-visualization experiments that the faster-moving inner vortex undergoes an 
explosive transition shortly after passing through this phase. For this particular phase, 
the flow field was divided into four spatial regions (I, 11, I11 and IV) as shown in 
figure 2. Flow-visualization experiments showed that the two merging vortices under- 
went pairing in region 11, while region 111 contained the combined vortex following 
the merger, and region I contained a type-2 vortex near the end of its roll-up 
(see I). Although flow-visualization revealed no clear vortical structure in region IV,  
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FIGURE 3. Phase-average longitudinal velocity profiles at : 0 ,  z = 1 1 . 1 1  cm ; 0, 
x = 11.75 cm; 0, .T = 12.38 cm. 0,  mean velocity profile at z = 11.75 cm. 

measurements were carried out there in order to see if the phase-averaging technique 
could sift out the (probably hidden) underlying large-scale structure. The spatial region 
for measurements in three additional phases of the pairing process, encompassing the 
two pairing vortices only, are also shown in figure 2. Identified as regions V, VI and 
VII, these three are small variations of the region 11. Thus regions V, 11, VI and 
VII (characterized as phases 1, 2, 3, and 4, respectively) capture the details of the 
pairing event at  close time intervals as the event progresses. 

The spatial grid spacing for the measurement locations were chosen after preliminary 
investigations which showed that the measured vorticity at  a particular location 
increased with decreasing grid size until a size was reached when further decreases did 
not noticeably alter it any more. The grid size was judiciously varied both in x and in y, 
with larger spacing on the periphery but finer spacings in the vortex core. The numbers 
of spatial grids used in each region are tabulated in the legend of figure 2. 

3. Results and discussion 
3.1. Phase-average velocity distributions 

The phase-average profiles (u) (y) are shown in figure 3 for three x stations within the 
region 11, at x = 11-1 1, 11-75 and 12-38 cm. The centres of the two pairing vortices are 
located a t  x = 11.75 cm in the ‘radial configuration’; thus the stations x = 11.11 and 
12.38 cm represent the trailing and the leading ends, respectively, of the vortex pair. 
Also shown in figure 3 is U ( y )  for x = 11.75cm. The (u) profiles can be qualitatively 
explained by considering the induced velocity fields of the two vortices at  the phase 
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FIGURE 4. Explanation for induced longitudinal velocities due to the vortices. 

under study, drawn schematically in figure 4. The mean velocity profile and the vortex 
pair locations are realistically sketched in (u) and (b )  for the radial configuration of the 
two vortices. Vortex 1 moves much faster than vortex 2 ; the latter is also weaker than 
the former. The velocity fields of vortices 1 and 2 are sketchedin ( c )  and ( d )  respectively, 
each with a bias velocity equal to the difference between the convection velocity of the 
vortex and the local mean velocity a t  its y location. Note that a t  this phase vortex 1 
moves faster than the local mean velocity while vortex 2 moves slower than the local 
mean velocity (see I). Consequently, the combined velocity distribution due to the 
vortex pair will be as shown in figure 4(e). When this is superimposed on the mean 
velocity profile (figure 4a) ,  the resulting velocity distribution (figure 44) is not unlike 
the measured distribution in figure 3. The above qualitative explanation is fi>r a plane 
configuration; if the axisymrnetric configuration is taken into consideration, the 
theoretical model profiles will agree better with the data. 

Note that the two other profiles (u) (y) in figure 3 also show dual, but weaker, humps 
so that the influence of the vortex pair is also fairly strongly felt a t  these two locations 
towards the front and rear ends of the vortex. But farther away on either side (in x) 
of each vortex, (u) would have contributions opposite to those shown in figure 4(e); 
for example see figure 7 .  The slight dip in the time-mean profile U(y) in figure 3 can be 
attributed to the combined effects of the radial separation of the alternate vortices a t  
this x location, as well as to t h e  hot-wire response to large-amplitude fluctuations. 
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FIQURE 7. (u,)/V, distributions over the measurement regions: (a) region I; ( b )  region If;  
(c) region 111; ( d )  region IV. 

The measured phase-average (v) (y) profiles for the same three x stations of figure 3 
are shown in figure 5. If the centres of the vortices were situated exactly on a radial 
line (i.e. at  the same z) and the vortices were symmetric in x, the values of {v) every- 
where on that radial line would be expected to be the same as the V value (i.e. almost 
zero). This condition is nearly met at x = 11.75 cm, but (w) (y) here shows undulations 
because the centres of the two vortices are displaced slightly (in x) and the front and 
rear ends of the vortices are not symmetric about their centres (see later). As done in 
figure 4 for (u) (y) profiles, realistic transverse velocity profiles associated with 
the vortex pair sketched in figure 6 reasonably explain the (v)(y) variations of 
figure 5 .  

The phase-average (up) distributions in the (x, y) plane for regions I-IV are shown 
as relief maps in figures 7(a)-(d). The corresponding ( u p )  maps are presented in 
figures 8 (a)-(a). The centres of the vortices as determined from the vorticity contours 
(see later) are shown by the vertical lines with a cross-sign in the base plane. Curves at  
larger y stations crossing those a t  smaller y are not shown for visual clarity. 

Note that even though the instantaneous signals contain large-amplitude random 
velocity fluctuations, the phase-averaging technique sifts out the coherent structure 
signatures. The region I represents essentially the conclusion stage of the vortex roll- 
up process, as seen in the flow visualization pictures (figure 9a) .  The corresponding 
streaklines of the rolled-up vortex are schematically shown in figure 9 (b) (see plate 1). 
Consider the induced velocities along the dotted lines A and B as shown in the figure. 
Clearly, the induced streamwise velocity along the line B, which is on the inner i.e. 
the core side of the jet, will be maximum at an x station corresponding to  the vortex 
centre. Thus the (up)  (x) variation along B should be as shown qualitatively in the 
profile a t  the bottom of figure 9 ( b ) .  Similarly, along A ,  the induced velocity (up)  (2) 

should be negative like the profile shown qualitatively at  the top of figure 9 ( b ) .  Such 
variations of (up) (x) can be observed in figure 7 (a) .  However, the profiles with the 
negative dips, radially outside the vortex centre, are weaker, as to be expected because 



504 A .  K .  M .  F.  Hussain and K .  B .  H .  Q .  Zaman 

FIGURE 8. (v,>/U, distributions over the measurement regions I-IV: 
(a) region I; (b) region 11; (c) region 111; (d )  region IV. 

of the axisymmetric flow configuration. For example, compare the data represented 
by the 8th and 14th traces along increasing y in figure 7 (a)  with the lower and upper 
profiles in figure 9 ( b ) ,  respectively. In a similar manner, the measured distributions of 
(v) (x) can be explained satisfactorily. 

In  region I (containing a single rolled-up vortical structure), while the (up) 
profiles are approximately symmetric in x around the vortex centre, the (v,) profiles 
appear antisymmetric, thus indicating small net contribution of the coherent structure 
to the time-average Reynolds stress. Similar characteristic distributions of (up> and 
( u p )  are also observed for regions I11 and IV, both of which contain single vortical 
structures (after the completion of pairing). For region I1 (and also for regions V, V I  
and V I I  for which these plots are not shown), on the other hand, the variations are 
complicated; especially in transverse regions between the two vortices (see figures 7 b 
and 8b) .  

The phase-average total correlation (uv) ( = (upup)  + (u,v,)) profiles (in x) are 
shown only for regions I1 and I11 in figure l O ( a )  and ( b ) ,  respectively. Comparison of 
figure 10 (a )  with figure 8 ( b ) ,  for example, show that the asymmetry properties of 
(v,) (z) profiles are carried onto (uv) (z) profiles. In  general, however, as can be seen in 
figure 10 (a) ,  the correlation value is positive over most of z a t  transverse locations that 
fall between the two pairing vortices. 

3.2. The vorticity contours 
The contours of constant phase average vorticity a, non-dimensionalized by fp, in 
each of the seven measurement regions are shown in figures 11 (a)-(9). The roll-up of 
vortex 2 (one which decelerates during pairing, see I) can be seen in figure 1 I (a )  while 
the pairing process is captured for successive phases (1-4) in figures 1 I ( e ) ,  (b ) ,  (f) and 
(g), respectively. For these latter four cases, the delay time 7, taking the second (i.e. 
phase 2) as the reference phase, is shown in the legend. The ' dip ' on the low-speed side 
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FIUURE 10. The (u.w)/U: distributions: (a) region 11; ( b )  region 111. 

of the vorticity contours will be explained later. The phase-average constant vorticity 
contours, except for the low-speed side distortions, bear excellent resemblance to the 
smoke pictures discussed in I. 

The roll-up process shifts the peak vorticity fluid towards the low-speed region, and 
the peak vorticity in the rolled-up vortex centre is much higher than that in the braid 
connecting it to the lip. More interesting is the fact that the 'braid' connecting the 
vortices in region I and I1 contains much lower vorticity (discussed later). It is clear 
that the vorticity from the initial boundary layer before separation is mostly accumu- 
lated in the cores of the rolled-up vortex rings; the ratio of the core peak vorticity in 
region I to the maximum mean vorticity in the initial boundary layer (which was 
measured 0.25 cm upstream from the nozzle exit and found consistent with the Blasius 
profile value) was about 0.60. 

The choice of phases 2 and 3 of vortex pairing was motivated by the flow-visualization 
experiments, which showed a sudden diffusion of the smoke traces soon after the 
vortex 1 passed through the radial configuration. The other two phases (1  and 4) were 
chosen to determine if an earlier or a later phase in the pairing process has significantly 
different dynamical importance. The inclination of the line connecting the centres of 
the two merging vortices with the jet axis (see I) in phases 1 and 4 are slightly different 
(35" and 38", respectively), although they were intended to be the same. This is so 
because there is no apriori methodof accurately determining the time delay (i.e. phase) 
that will result after phase averaging. 

The individual identities of the two pairing vortices are lost in region I11 as shown in 
figure 11 (c). The two paired vortices may still retain some semblance of separate 
structures, but their small scales and the jitter from one realization to the next would 
not allow this remnant structure to be detected. Smoke traces in the visualization 
experiments also appear diffuse at  this location, indicating somewhat uniform spread 
of turbulence throughout the entire core of the merged structure. This observation is 
also supported by the fact that the peak vorticity in this region is less than that of 
either of the two pairing vortices (figures 11 b,  e ,  f, 9 ) .  

Circulation (r) measured by line integration of the phase-average velocities aiound 
a rectangle just enclosing the G / f p  = 1.0 contour was found to remain constant from 
region I1 to region 111; this value of r/U, D was found to be approximately 1.0 for both 
the regions. The areas enclosed by the Q / f P  = 1-0 contours in regions I1 and I11 were 
not significantly different: approximately 20 and 23 cm2, respectively. Thus the 
average vorticity ( =  r/area) in regions I1 and I11 did not change appreciably; the 
sharp peaks in vorticity in region I1 (figure 1 1  b )  crumbled to a much lower plateau in 
region I11 (figure 11 c ) .  This rapid diffusion of vorticity within the core is believed to 



506 A .  K .  M .  F .  Hussain and K .  B.  M .  Q. Zaman 

I I I I I I I I I I I 

0.2 L I I 1 I I I I I I I 

XlD 

0.2 0.4 0.6 0.8 1 .o 1.2 

1 .o 

0.8 

2 0.6 a 

0.4 

0.2 

'--A 

\ 
\ 
\ 
\ 

1 .o 

0.8 

9 0.6 
A 

0.4 

0.2 I 1 1 1  I I I I I 1 1  

1 .o 1.2 1.4 1.6 1.8 2-0 2.2 

x lD  



Vortex pairing in a circular j e t .  Part 2 507 

FIGURE 11 (d, e). For legend see page 508. 

be due to the intense interaction of the two vortices, the associated entrainment, as 
well as to transition ensuing shortly after phase 2 in the pairing process. 

These data also suggest that coalescence does not enhance the peak vorticity in 
region 111. The peak vorticity here is even less than that of vortex 2 as seen in the last 
measurement region, namely in figure 11 (g), i.e. in phase 4 of pairing. As discussed in I, 
during the later phases of the pairing process, the diffuse core of vortex 1 is actually 
seen to recede from vortex 2 while traces of vortieal fluid from the former unwind and 
wrap around the periphery of the latter. This phase of pairing appears to be the one 
performing ‘engulfment ’ (entrainment) of non-vortical fluid from outside either vortex. 
The paired vortex becomes progressively more diffuse as it travels farther downstream, 
and in region IV (figure 1 1  d )  the measured peak vorticity is quite low compared to 
that in any of the previous regions. 
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(a) Loss of the peak vorticity. The measured peak vorticity SZ, generally drops with 
increasing downstream distance (figures 11 a+). Figure 12 shows SZ, as a function of 
x and 7. The peak vorticity of the vortex 2 (the slower-moving outer one of a pair) is 
considerably higher when it is in region I than when it is in the next measurement 
region, namely a t  phase 1 of pairing (in region V, figure 11 e). Within this distance, the 
vortex 2 expands slightly in its toroid diameter, increases considerably in the cross- 
sectional diameter, and is in a state of deceleration due to its interaction with the 
accelerating vortex 1. 

Additional data showing further details of the peak vortioity drop for vortex 2 were 
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FIGURE 12. Peak vorticity R, as a function of: (a) axial distance; ( b )  vortex transit time. 

A, vortex 1 ;  V ,  vortex 2; 0 ,  paired vortex. 

not taken, but it should be clear that the large overall drop (by 65 yo of its initial value) 
from region I to region V (figures 1 1  a, e )  cannot be due to molecular (viscous) diffusion, 
since the viscous diffusion time scale R2/v w 24 s ( R  being theapproximate core radius) 
is much much larger than the vortex transit time ( x 25 ms) between regions I and V; 
that is, viscous diffusion is inconsequential. Thus, although vortex 2 in this region is 
in a state of being ‘stretched’ (since the toroid diameter increases), the intense inter- 
action with vortex 1 is probably responsible for the rapid diminution of its core 
vorticity; this is consistent with the large increase in its core cross-section from region I 
to region V (see figures 1 1  a, e and 9a).  

On the other hand, vortex 1,  which is accelerating and undergoing decrease in its 
toroid as well as cross-sectional diameter, maintains its peak vorticity between phases 
1 and 2; this peak value at  phase 1 has dropped to only about 70 yo from the value at  
roll-up (the peak vorticity of vortex 1 during roll-up is expected to be the same as that 
of vortex 2).  Between phases 2 and 3, vortex 1 begins decelerating, this process being 
marked by an abrupt drop of its peak vorticity. The time AT elapsed between these two 
phases is only about 3 ms ( A T / T  2~ 10 %) and within that period, the peak vorticity of 
vortex 1 has almost halved. Very little decrease is observed farther downstream during 
passage from phase 3 to phase 4. 
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The abrupt drop of the peak vorticity of vortex 1 from phase 2 to 3 is probably 
associated with its sudden deceleration and relaxation to a larger core diameter as it 
passes through the radial configuration (figures 11 b, f ), as well as the onset of large 
turbulence due to transition. These data are thus consistent with the visual observa- 
tion that vortex 1 undergoes a sudden transition (marked by an explosive diffusion of 
the smoke tracers) soon after it passes through the radial configuration. This thus 
marks the most dramatic change in the large-scale vorticity during the pairing event. 

( b )  Braids. All the vorticity contours shown in figures 11 (a, b )  appear as concen- 
trated lumps with no significant vorticity in the braids between two vortical structures. 
In figure 13, a(u)/ay and -a{v)/ax as functions of y are shown for x = 9-53 and 
11.75 cm, the former x station being midway between the vortices in regions I and I1 
while the latter corresponds to the location of the centres of the two vortices in 
region 11. Note that a{u)/ay and -(av)/ax for x = 11.75cm are of the same sign 
almost everywhere and thus the total vorticity is higher in magnitude than either of 
these two components. But the magnitudes of a{u)/ay and - a(v)/ax at x = 9.53 cm 
are not only low but also cancel each other, thus producing much lower vorticity 
everywhere between two adjacent vortices. That is why the contours of the lowest 
value of Q/f, (i.e. 0-5) in the intermediate regions have too much scatter (shown by 
dotted lines in figures 1 1 a-g) to show any clear boundaries of the braids. 

The roll-up of the shear layer is a mechanism for accumulation of vorticity in lumps. 
The phenomenon of accumulation of vorticity in lumps, even in an inviscid vortex 
sheet (i.e. shear layer), is a simple consequence of the sinusoidal undulation of the 
layer due to its (inviscid) instability. Consider a growing sinusoidal displacement of a 
uniform vortex sheet; at locations of maximum slope, half-wavelengths apart, the 
growing sinusoidal displacement will alternately augment and diminish vorticity . 
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The induced velocities associated with this vorticity perturbation will accelerate the 
accumulation process (Batchelor 1970, p. 516). The result is the roll-up of the shear 
layer into vortical lumps one wavelength apart, connected by thin braids. The induced 
motion associated with the like-signed vortex trains will draw more and more vortical 
fluid into the vortex lumps away from the braids. In  a vortex train in a mixing layer of 
characteristic velocity scale U,, the circulation per wavelength I’ = V,  h is constant. 
If the wavelength is divided into two parts, one containing a vortex and the rest the 
adjoining braid, then the total of circulations rb and rC around the braid and the 
vortex, must equal I?, i.e. rb + rc = I?. The continued rotation of the like-signed 
adjoining vortical structures will stretch the intervening braid and pull vortical fluid 
away from the braid into the vortical lumps and, thus, increase rc with time. Hence rb 
must progressively decrease. If one assumes that the vorticity diffusion transverse to 
the braid is strong enough to disallow rapid decrease in the braid thickness, it then 
follows that the braid vorticity will progressively diminish. 

Corcos & Sherman’s (1976) analysis for a gravitationally stable stratified shear layer 
demonstrates that braid vorticity is steadily depleted by advection to the cores, but 
is replenished by baroclinic generation. Based on this analysis, they concluded: ‘In 
the uniform-density or barotropic case, the terminal state is one in which vorticity of 
the braids is totally depleted.’ Their analysis thus supports the low braid vorticity 
measured by us. 

3.3. Jitter, flow reversal and contour distortions 
The roll-up, pairing, and passage of paired vortices even under the excitation is not 
exactly periodic in space and time. There are small deviations from periodicity due to 
dispersion in convection velocity, shape, size, orientation, etc. which can be observed 
visually with the help of a stationary marker and stroboscopic illumination of the flow 
(see I);  these deviations will be denoted as ‘jitter ’. The effect of the jitter would be to 
smear out the spatial gradients of the different phase-averaged flow properties, as well 
as to contribute to the phase-average turbulence intensities in regions of large 
gradients . 

The jitter of the vortices generally increase with downstream distance but vortex 1 
assumes large uncertainties in its arrival time at x / D  = 1-5 while ‘zooming’ through 
vortex 2. Since the reference probe, used to obtain the triggering signal, was located a t  
x / D  = 1.5 (on the centre-line), the relative jitter between the triggering signal and the 
vortex arrival time was the least for vortex 1 at this location. But this relative triggering 
signal jitter was appreciable for vortex 2 a t  the same axial location (estimated to be 
about 0.2cm by flow visualization experiments, or about lms),  for vortex 2 in 
region I, and for the paired vortex farther downstream. 

The ‘dip’ in the vorticity contours, especially on the low-velocity side, observed 
nearer to the exit is a result of the combined effects of the triggering signal jitter and 
flow reversal. Let us consider the effect of the triggering signal jitter first. Consider the 
two pairing vortices as shown in figure 14 (a )  at three adjacent phases A ,  B and C. Also 
assume that measurements in phase B are desired. Owing to jitter in the passage of 
vortex 1, trigger will occur randomly between phases A and C. But since the triggering 
signal is obtained from the reference probe placed close to the (inner) vortex 1, the 
physical location of the (outer) vortex 2 will vary from trigger to trigger as shown in 
figure 14(b). Consequently, vorticity measured at  measurement point 2 (in phase B )  
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FIGURE 14. Contour distortion due to triggering signal 
jitter induced by vortex 1. 

will be diluted by phases A and C. On the other hand, a t  either of the measurement 
points 1 and 3 in phase B ,  measured vorticity will be weighted by phases C or A .  
Furthermore, the probability of occurrence of either A or C is larger than B owing to 
the time-dependent convection velocity of vortex i ; seer. (Indeed, if the flow inphase B 
is illuminated with external trigger, vortex 1 appears more often a t  either phase A or C 
rather than B. )  Therefore, distortions of a vortex cross-section (figure 14~) would be 
expected. This should explain, at  least partially, the observed ‘dips ’ in regions I1 and 
VI, and also in regions I, V and VII. 

As explained before, the relative jitter for vortex 1 is least in regions I1 or VI, which 
should explain why such a ‘dip’ is not observed for vortex 1 (on the high-speed side) 
in these regions. However, if vortex 1 is sufficiently away from x / D  = 1.5, the effect is 
expected to occur on the high-speed side; this is indeed observed in region V (see 
figure 11 e ) .  In region I, the effect of the relative jitter on the contour distortion on the 
high-speed side is not obvious owing to the ‘folding’ of the contours. On the other 
hand, the above effect is less pronounced in regions I11 and IV, where the jitter, not 
only in arrival times but also in shape, size, orientation, etc., presumably become more 
pronounced and no clear ‘dips’ are observed on either the low-speed or the high-speed 
side of the vortices (figures 11 c,  d) .  Obviously, the contour distortion in vortex 2 in the 
regions nearer to the exit could be lessened if the reference probe were placed close to 
vortex 2 (e.g. at  x / D  = 1.5 but outside the shear layer). This was not done because the 
signal at  the outer edge of the shear layer is not ‘ clean ’ and also because such a scheme 
would grossly distort vortex 1 in the regions of pairing. 
Flow reversal. Further investigations revealed that the flow on the low-speed side 

undergoes reversal (i.e. directed upstream). Thus, at some phases during the passage of 
the vortices, the hot wire being insensitive to flow reversal, the instantaneous measure- 
ments of the velocity vector direction and the vorticity would be in error. This measure- 
ment error contributed further to the contour distortions on the low-speed side. 
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Flow reversal is illustrated in figure 15 (plate 2) by the two oscilloscope signal traces 
from a hot-wire-cold-wire pair sensor located at x / D  = 0.6 at the radial location 
where U / V ,  = 0.10. The cold wire was located about 1 mm upstream of the hot wire, 
normal to the latter and placedat the latter’s mid-length. The cold wire was about 1 mm 
long, 1 pm in diameter and operated a t  a very low overheat so that it was sensitive to 
temperature only. The hot wire was about 1 mm long and 5pm in diameter and 
operated at an overheat ratio of 0.8. Both were etched Wollaston wires made of 90 yo 
Pt and 10 % Rh. The top (inverted) trace from the cold wire shows temperature spikes 
produced by the wake of the hot wire, unambiguously representing the instants of 
flow reversal. The unique connexion of the (negative) spikes in the cold-wire signal with 
flow reversal was confirmed by the fact that the cold-wire signal showed absolutely no 
spike a t  any radial location, when only the hot-wire current was turned off. Note that 
the positive spikes in the velocity signal, corresponding to the negative spikes in the 
cold-wire signal, represent negative velocity, but are rectified by the hot wire. 
(Professor R. A. Antonia’s help in the flow-reversal experiments is deeply appreciated.) 

The flow reversal wits found to occur only when the probe was located a t  a radial 
position outside the corresponding vortex centre a t  that location. Study at different 
x and y in an unperturbed circular jet showed that reversal is a consequence of large- 
scale structures and progressively becomes weaker with increasing x .  I n  the jet under 
excitation, the flow reversal commenced a t  UIU, 2 0.30 (occasional a t  this location); 
with increasing radius the strength of the spikes increased to a maximum at about 
U/Ue= 0-05 and then it progressively dropped off. Measurements along the UIU. = 0.10 
line revealed that it is more pronounced and frequent closer to the exit, e.g. in regions I 
and I1 where the vortices are more energetic and becomes progressively less frequent 
with increasing x ,  e.g. in regions I11 and IV. Note that the spikes in the temperature 
signal are alternately weak and strong due to the different lateral positions and 
possibly different strengths of the alternate vortices 1 and 2 passing by the probe. 
Furthermore, the flow reversal phenomenon was not exactly periodic because of jitter 
and the amplitude of the temperature spikes varied widely with time (see figure 15). 

Consider now the measurement points on the low-speed side on a radial line A B  
passing through the vortex centre (figure 16a). On this line, the phase-average (v) 
should be zero but, around point B, the measured ( u )  velocity would be in error in sign 
due to the flow reversal. Specifically, t,he actual ( u )  profile along line AB, shown by 
the solid line in figure 16(b), would be measured as the dotted line from point C 
outwards. Consequently, a vorticity contour line on the low-speed side would be 
shifted towards the jet centre-line (figure 16c). Since the reversal phenomenon occurs 
only over a short time, the above effect would be limited presumably around point B 
(figure 16a), thus explaining the observed contour distortions. Since the flow reversal 
would not explain the contour distortions observed on the high-speed side (e.g. in 
figure 11 e ) ,  it  is concluded that the observed distortions were due to the combined 
effects of the triggering signal jitter and the flow reversal. 

3.4. Role of the vortical structures in theJlow dynamics 

The contours of constant (v) for regions I-IV are shown in figures 17(a)-(d). The 
plus symbol in each figure roughly locates the vortex centre, determined from the 
vorticity contours. Solid lines represent positive values of (v) (representing motions 
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FIGURE 16. Explanation for measurement errors due to flow reversal. 

away from the jet centreline) while dashed lines represent inward motions. These 
contours suggest that entrainment of non-vortical fluid from outside the jet occurs 
mainly at  the trailing edges of the vortical structures. Notice also that the regions 
encompassing negative (v) become progressively larger than those encompassing 
positive ( v )  as the structure travels downstream. Thus in region IV, the vortical 
structure mainly brings outside fluid inwards. 

The (v) contours provide a clearer understanding of the transverse motions than 
provided by the staggered profiles in figure 8. The (u) contours are not shown partly 
to conserve space and also partly because the large transverse gradients of the mean 
axial velocity will not allow the effect of the vortices on (u) to be seen clearly. However, 
the correlation {uv) contours are presented in figures 18(a)-(g) for regions I-VII, 
respectively. As in figure 17 ,  positive values are shown by solid lines while negative 
values are shown by dashed lines. Figures 18 (a)-(c) show clearly that t,he values of the 
correlation have regions of alternate positive and negative distributions in x .  On the 
upstream front of a vortex, large negative correlations are encountered, while on its 
downstream side large positive values are found. This is consistent with the flow 
visualization pictures showing a vortical lump pushing the high-speed jet core fluid 
outwards near the leading end but pulling back external fluid a t  the rear of the 
vortical structure. 

Note that in region I, while only one positive and one negative region occurred in 
the (v) contours (figure 17a), the (uv )  contours (figure 18a) show two additional 
regions farther downstream - showing that the spatial periodicity in (uv) ( x )  is double 
that of (v) (2). This can be explained qualitatively: ( u )  ( x )  is symmetric and (v) ( x )  is 
antisymmetric about the vortex centre (see figures 7 and 8) ,  thus if (u)  (5)  is repre- 
sented by A cos 2nx/L  and (v) ( x )  by B sin 2nx/L ,  (uv) (r)  will be A B  sin 2nx/$L (i.e. 
antisymmetric about the vortex centre, as was found to be the case in figure l o b ) .  This 
shows that the wavelength in ( u v ) ( x )  will be halved, thus accounting for the two 
additional positive and negative contour regions in figure 18 ( c ) .  Similar halving of the 
wavelength in the (uv )  ( x )  data can also be noticed in region I.  The contours are com- 
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plicated in the regions of pairing, i.e. in figures 18(b), ( e ) ,  ( f )  and (9). In region I V  
(figure 18d) ,  the ( u v )  ( x )  values are obviously too low to exhibit such alternate positive 
and negative correlation regions. 

Note that the alternating positive and negative coherent Reynolds stresses asso- 
ciated with the pairing vortices (figures 18b, e , f ,  g) suggest that the time-average 
Reynolds stress and production n be negative. As shown in I, production can be 
negative over an appreciable region. T Thus even though it contrasts gradient transport 
hypotheses and turbulence modelling theories, negative production can be explained 
by considering coherent structure interactions. 

With increasing x the vortices become weaker and the contribution of {u,v,) to the 
total correlation (uv) become pronounced. Nearer to the exit, e.g., in regions I and 11, 
(u,v,) is very small, the total correlation (uv )  being primarily due to the large-scale 
organized vortices; i.e. (uv)  N (upup) .  In  region 111, (u,v,) values are still quite low in 
magnitude compared to (uv )  values but, in region IV, (urvr) is found to be comparable 
or even higher than (upup) .  Figures 19(a)-(c) show variations of {uv) and (u,v,) as 
functions of y for regions 11, I11 and I V  a t  the leading ends of the coherent vortical 
structures. As shown in (a ) ,  the values of (u,v,) in region I1 are in the ‘noise’ level 
compared to values of (uv).  Similarly, very small values of (u,vJ are generally found 
in the measurement regions I, V, V I  and VI I  (not shown). In region 111, however, where 
turbulence has set in in the paired vortex core, values of {u,v,) are still low but are no 
more negligible; see figure 19(b) .  Notice that the ordinate scale in ( b )  is 10 times that 
in (a) ;  thus the phase-average correlation magnitudes in region I11 are generally an 
order-of-magnitude less than those in region 11. Figure 19 (c) shows that, in region IV,  
(u,v,) and (upup)  ( =  (uv)-(u,v,)) values are comparable; that is, transport by 
organized and random motions are equally important. 

Part of the measured (u,v,), especially in the downstream regions, are believed to be 
contributed by the triggering-signal jitter (see 93.3).  In a recent study of vortex 
shedding from a cylinder, using phase-averaging techniques, Cantwell & Coles ( 1978, 
private communication) found values of (u, v,) comparable to (up u p )  everywhere in 
the flow field. In spite of their suggestion to the contrary, the large {u,v,) values found 
by them may be due partly to the phase jitter of the structure arrival times. 

Zone-average coherent Reynolds stress. Figures 18(b), ( e ) ,  ( f )  and ( g )  reveal that the 
negative correlation regions are marked by lower magnitudes than those in the positive 
regions, suggesting an average positive correlation over the passage of the pairing 
vortices. Browand & Wiedman (1976) showed that the average correlation coefficient 
(averaged in time a t  each y) was in general higher during the passage of a pair of 
coalescing vortices than during the passage of an already paired vortical structure. 
A parallel effort was undertaken here to compute average correlation for each y over 
a certain x range. Thus, while Browand & Wiedman’s data show average correlation 
coefficient for a certain x over a time span covering the passage of the vortical structures, 
the following data represent correlation a t  a certain instant of time (or phase) but 
averaged over an x range encompassing the vortical structures. In view of the rapid 
temporal changes in the coherent momentum transport, these data should be more 
meaningful. The zone-average correlation is defined as 
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where uf and v' are the time-average turbulence intensities; thus normalization was 
done by a constant quantity for all y in a particular region. For each region under study, 
the range (x1,x2) was chosen to include only the Q / f P  = 1.0 contour and was kept 
constant at all y. The uGP us. y / D  data for regions I-IV are shown in figure 20. The 
maximum values of u1vf/U,2, i.e. normalization factors, for the regions I-IV were 
0.0657,0.0627,0.0553 and 0.0394, respectively. The value of u:vp is large when the two 
vortices are in the process of pairing but is almost zero for regions I, I11 and IV, where 
only one vortical structure is present. Notice that averaging over only a few (i.e. 
8-12) x stations, resulted in considerable scatter in the data. 

Even though these data and those of Browand & Wiedman (1976) are based on 
different approaches, the implications are in qualitative agreement. These data suggest 
that correlation over a single vortical structure, no matter how it is formed (say, in 
regions I, 111, IV), is much lower than that during pairing. It should be emphasized 
that the correlation values shown here are dependent on the bound (xl, x2) chosen for 
the averaging. This can best be appreciated from the (uv )  contours as shown in 
figure 18. Since ( u p v p )  is alternately positive and negative, shift of and/or change 
in the extent of the range (xl, x2)  will affect the value of upp. 

Similar zone-average correlations for the regions V, 11, VI and VII reveal the 
relative importance of different phases in the pairing process. Figure 2 1 shows up up US. y 
for phases 1, 2, 3 and 4 of the pairing event. As is evident, phase 1 exhibits maximum 
zone average correlation of all the four phases. The correlation peaks are the lowest 
in phase 4; when integrated in y, this phase will produce the least average correlation. 

A 
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FIGURE 20. Profiles of the 'zone-average' coherent structure Reynolds stress uQp for: 

, region I ; 0, region 11 ; 0, region I11 ; 0, region IV. 

FIQURE 21. Profiles of u i p  for the different phases of pairing: 0, phase 1 (region V); 
0, phase 2 (region 11); 0, phase 3 (region VI) ;  V, phase 4 (region VII). 

(Note that the normalizing factors ( U ' V ' ) ~ ~ ~  were approximately the s&me for the four 
phases; it decreased somewhat from phase I to phase 4, the maximum decrease being 
within 3 yo.) 

Thus, it is concluded that maximum transverse transport of the .ii momentum occurs 
during theearlyphases of the pairing process. It should be mentionedhere that thepair- 
ing event captured in the plane mixing-layer study by Browand & Wiedman (1976) re- 
presents an average over a range of phases in the pairing process. Their study, however, 
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does not provide phase-dependent information, owing to the use of the Taylor hypo- 
thesis in obtaining spatial distributions of properties from time traces. Following that 
approach, evolution of the coherent structuie at  different phases cannot be unveiled 
(Zaman & Hussain 1981). 

3.5. Phase-average streamlines 
In an effort to understand further the coherent structure dynamics, phase-average 
streamlines are discussed in this section. From the ( (u ) ,  (v)) data in the (x, 9 )  plane, 
it is possible to draw the phase-average streamlines at the specific phases under 
consideration. The equation of a streamline being u x ds = 0,  the slope of the phase- 
average streamline @p at any location x is given by dy/dx = ( v ) / (u ) .  Thus the phase- 
average streamlines a t  any phase can be drawn from the spatial distribution of the 
velocity vectors ((u),(v)) by the method of isoclines. Interpretation of the flow 
dynamics by streamlines, especially those of vortical motions, is not, straightforward 
because the streamlines are not invariant under Galilean transformation. Thus, with 
respect to the laboratory co-ordinates, the average streamlines in any of the measure- 
ment regions would be essentially smooth, almost straight lines showing no coherent 
structure. Only when the reference frame is translated with the convection velocity 
of the vortices, would the vortical motion be apparent. The problem is further com- 
pounded by the relative motions within the structure itself. 

Figures 22-25 show the spatial distributions of the phase-average velocity vectors 
in the regions I-IV respectively, at  the phase under consideration. In  each figure, the 
velocity-vector origins are denoted by the dots, the directions by the orientations of 
the lines from the dots, and the magnitudes by the line lengths. In figure 22, the 
reference frame velocity used is 0.4Ue which is the convection velocity of the type 2 
vortex in this region (see I). A picture of the vortex cross-section, not unlike the 
vorticity contours, clearly emerges from the velocity vectors. In order to compare the 
streamline patterns with the structure boundary, the vorticity contours (Q/& = 1.0 
and 2.0 with the vortex centres denoted by the symbol 0) are also shown in t,his figure 
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as clotted lines. Defining the structure boundary by the iso-vorticity contours seems 
appropriate since the coherent structures are vortical and also since they are invariant 
under Galilean transformation. Note that the structure centre denoted by the stream- 
lines in figure 22 nearly coincides with that denoted by the peak vorticity. 

The region I1 involves two vortices in intense relative motion, and interpretation 
of the streamline pattern needs care. If the velocity vectors are drawn with respect to 
the laboratory frame, no vortical motion will be evident from the smooth parallel 
streamlines in that frame. Figures 23 (a)-(c) show the velocity vector patterns with the 
co-ordinates convected downstream with : (a )  the streamwise velocity of vortex 
1 (1.25 Ue), ( b )  the streamwise velocity of vortex 2 (0.35Ue), and (c)  the average stream- 
wise convection velocity @8U, of the two; see I. Note that in figure 23 (a ) ,  vortex 2 is 
completely obliterated and the closed streamlines appear only around the vortex 1 
centre. On the other hand, in figure 23 ( b ) ,  closed streamlines appear only around the 
centre of vortex 2, and vortex 1 remains hidden. The much higher convection velocity 
of vortex 1 influences the streamlines in the latter figure, resulting in an elongated and 
somewhat elliptical closed contours over vortex 2. When the average of the two con- 
vection velocities are used for co-ordinate translation (figure 23c), neither one of the 
vortex centres is clear. 

The convection velocities of the paired vortex are used to show similar streamline 
patterns in regions I11 and I V  in figures 24 and 25, respectively, with the vorticity 
contours superimposed on them. Even though regions I11 and IV are after vortex 
pairing and transition, especially in region I V  where visualization experiments hardly 
show any coherent structure, the phase-average streamlines clearly reveal the vortical 
motions. Furthermore, there being a single vortical structure in either of these two 
regions, and the reference frame being convected downstream with the velocity of the 
paired vortex, the streamline patterns agree fairly with the vorticity contours. The 
structure aspect ratio as well as its spacing between regions I11 and I V  very closely 
agree with the naturally occurring ‘average’ structure educed by Yule (1978). Yule 
found the spacing to be roughly 1.30;  the distance between the structures in regions 
I11 and I V  is about 1-250. 

In  order to provide an example of the nature of the streamlines drawn from the 
spatial distributions of ((u), (w)), figure 26 shows the phase-average streamlines lifp 
corresponding to the case of figure 23 (a) .  

3.6. Phase-average pseudo stream functions 

It is possible to compute the stream functions at  a particular phase from the spatial 
distributions of the phase-average streamwise velocity { u )  (x, y)  alone. In the near 
flow field of the axisymmetric jet, the phase-average velocity field can be considered 
axisymmetric. Thus for incompressible motion, the continuity equation in the 
cylindrical co-ordinates (x, r ,  a) corresponding to the velocity components (u, v ,  w) is 

a(u) 1 a 
-+--(r(w)) = 0, 
ax r ar 

from which it follows that there exists a scalar function ($) (x, r )  such that 

and that &$) = r (u) dr - r(v> dx, ( 3 . 4 ~ )  
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FIGURE 23 (a, b ) .  For legend see facing page. 

is an exact differential. In the present case of unsteady flows, the exact differential of 

(3 .4b )  

Note that the continuity equation (3.2) is not only necessary but also sufficient for the 
existence of the stream function {$) in a simply connected region (Rektorys 1969). 
The consequence ofd(+) being an exact differential is that its integral between points 
(xl, yl, tl)  and (z2, y2, t z )  is independent of the integration path, i.e. 

Note that the azimuthal component (w), even if present, is irrelevant to  (y?), nor can 
{ ~ )  be used to deduce (w>. 
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If time is held fixed (i.e. considering a particular phase only) and if integration is 
carried out in y a t  a fixed x, then {$) depends only on y so that a t  each x 

Repeating this integration at different x, a spatial distribution of the stream function 
can be obtained at the selected phase. On the axis of symmetry, it  is justifiable to take 
($) to be zero; i.e. {$-,) = 0. Thus, the non-dimensional phase-average stream 
function {$) were computed as 
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FIGURE 26. Streamline (en) pattern in region I1 with Uref = 1.25U,. 

Since the stream function is not invariant under Galilean transformation, the 
computed function will depend on the. reference frame velocity Uref. Note that these 
computations do not use the Taylor hypothesis. Because of the assumption of axi- 
symmetry and time independence of ($,), the computed functions ($> are termed 
pseudo stream functions. 

The contours of constant values of the phase-average stream function ($) corre- 
sponding to the situations in figures 22-25 are shown in figures 27-30, respectively: 
figure 27 for region I with CTref = O.4Ue; figures 28(a), ( b )  and (c)  for region I1 with 
Uref = 1-25, 0.35 and 0.8Ue, respectively; figure 29 for region 111, with Uref = 0.54q; 
and figure 30 for region IV with Uref = O.S8U,. The negative values of($) are separated 
from positive ($) values by a dotted line for ($) = - 0-01. Except for the low-speed 
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FIGURE 27. Contours of ($) in r e g 6 1  with Uref = @4U,. 

side, the agreement between the ($) functions and $p are impressive. Note the close 
agreement on the locations of ‘saddle points’ in regions I, I11 and IV. The low-speed 
side disagreement between ($) and $p is not pronounced in region IV (see figures 25 
and 30); but, in regions closer to the jet exit, significant differences can be noticed. 
While the velocity vectors indicate parallel streamlines on the low-speed side, the 
pseudo-stream-function contours indicate an outward bulge. This difference is most 
pronounced for region I (compare figures 22 and 27) and is progressively less so farther 
downstream. 

Referring back to figure 16, the dotted portion of the (u) profile in ( b )  from point C 
outward is in error owing to the effect of flow reversal and would cause the computed 
values of ($) (dotted line in figure 16d) to be higher than the actual values (solid line), 
and thus a constant ($) line around point B (figure 16a) would be shifted away from 
the jet centre-line. Note that this error is cumulative in the computation of ($). Thus, 
flow reversal should partly explain the differences on the low-speed side between 
constant <$) lines and streamlines $p.  However, the reasonable agreement everywhere 
between ($) and $p suggests that the assumption of the axisymmetry of the phase- 
average flow field is reasonable and that single-wire data may be adequate for qualita- 
tive description of the coherent structure motion (Zilberman et al. 1977; Cantwell et al. 
1978; Hussain, Kleis & Sokolov 1980). 

3.7. The superimposed random-Jluctuation field 

Contours of  the phase-average background turbulence intensities (u:)i and ($)6 are 
plotted in figures 31 and 32, respectively, covering the entire flow domain investigated, 
i.e. for regions I-IV combined. Note that the ordinate is expanded (about 3.7 times) 
compared to the abscissa scale. In  order to capture the details of the flow physics during 
pairing, the contours of (u$)a and ($)B for the phases 1-4 of the pairing process are 
shown in figures 33 and 34, respectively. The plus signs approximately locate the vortex 
centres in figures 31-34. The intensity contours show essentially no difference between 
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FIGURE 28 (a, b ) .  For legend see facing page. 

(uF>i and ($)?I, the peak values occur approximately a t  the vortex centres. In each 
region the x-extent of any contour is lower for (v:)?I than for (uf)+. 

The question naturally arises as to how much of the (uF)?I and (vF)?I data are due to 
the jitter. In  a horizontal line through a vortex centre, (up) should be zero and on a 
vertical line, (up) will have a maximum jump. Conversely for (v,). Consequently, one 
could argue that slight jitter in the vortex arrival time would contribute to the 
measured (u:)&, (v24  data. At locations where the vortices are small, say in region I, 
the relative effect can be large. However, in region IV where the coherent structure 
cross-section is large and the spatial gradients in (up) and (up> are small, the peak 
intensities are still large. Thus a t  least in regions I11 and IV where the vortices are 
turbulent, most of the measured intensities are due to random turbulent fluctuations. 
It will be apparent from the (u,v,.) contours, that the jitter effect in (uf)& and (v:)$ 
contours is not dominant. 
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FIGURE 29. Contours of ($) in region 111 with Uret = 0.54Ue. 

In  the regions I-IV, the peak values of I{v)I/Ue are 0.35, 0.35, 0.25 and 0.10, 
respectively, while the corresponding (v:)4/Ue are 0-22, 0.26, 0.20 and 0.15. The 
corresponding values of J(u,)l/U, peaks in the four regions are 0.45,0.55,0.25 and 0.15, 
while the values of (u:>*/U, peaks Stre 0.15, 0.18, 0.21 and 0.20, respectively. Thus in 
regions closer to the exit, the coherent motion velocity oscillations are stronger than 
those due to background turbulence while, in region IV, the latter becomes stronger 
than the former. Similar is the case for the Reynolds stress (see later). Closer to the jet 
exit, (v:)4 peaks are higher than (u,2)3 peaks; (u:)* values generally increase with 
increasing downstream distance. Cantwell & Coles ( 1978, private communication) also 
found (v:)i higher than (u:)* peaks in the central regions of the vortices shed from a 
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cylinder. As discussed in connexion with figure 19, the larger ($)* peaks in their 
measurements were probably also contributed partly by the phase jitter. 

Comparison of the phase-average intensity contours (e.g. (u:)* in figure 31) with the 
corresponding time-average contours (e.g. u' in figure 28u of I), shows that (uf)* in 
general is less than u' everywhere in the flow field. However, phase-average intensities 
do exceed time-average intensities at some spatial locations by as much as lo%, 
especially around the locations of the centres of the vortices. This is not unexpected; 
a burst of large-amplitude random fluctuations over a short duration (compared to the 
period) may not affect the total time-average r.m.s. intensity significantly, although 
phase average r.m.s. intensity measured a t  that particular phase would be larger. 
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FIGURE 32. Contours of (u:)*/U, for the regions I-IV combined. 
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FIGURE 33. Contours of (u",+/U, for the four phases of pairing. The (u:)*/U, values are: 
--, 0.15; - - -, 0.12; - -, 0.09; - - --, 0.06. 
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- 0.001, - 0.004, - 0.006, - 0.008 (dashed) ; 0.001, 0.004, 0.006, 0.008 (solid). 

Figures 33 and 34, which show the phase-average 1p.m.s. intensities a t  the four phases 
of pairing, confirm the visual observation that vortex 1 in passing from phase 2-3 
during pairing, begins its transition to turbulence (see I). The area in the (2, y) plane 
occupied by a particular contour (e.g. (u;)+/U, = 0.15) enlarges significantly between 
phases 2 and 3. This increase and the associated drop in t,he phase-average vorticity 
would suggest transition of vortex 1 between phases 2 and 3 of the pairing process. 

3.8. Interaction of background turbulence Reynolds stress with coherent vorticity 

The phase-average distribution of the background turbulence Reynolds stress (u+.v,) 
is shown in figure 35 for the entire flow region (i.e. regions I-IV combined) a t  the 
selected phase. The same co-ordinate scales are used as in figures 31 and 32. Figure 36 
shows the (u,v,> contours of the phases 1-4 of the pairing process. The vortex centres 
are indicated by the plus sign. Note that the peak (u,v,) locations do not coincide with 
those for (u;), and (v:)')B. Note also that the peaks in (u,v,> are not associated with the 
regions of steep gradients of (upup) (figure 19). Consequently, the (u,v,) data as well as 
the (u:), and ($)* do not contain significant inaccuracies due to phase dispersion or 
jitter. 

The coherent structure organizes the background turbulence such that the phase- 
average Reynolds stress (u,v,) acts to destroy the coherent structure vorticity. The 
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role of the background turbulence on the coherent vorticity can be understood by 
considering the governing equation for the phase-average vorticity. Using the decom- 
position (2.1), one can derive the governing equation for the time mean, coherent 
structure and background turbulent vorticity fields as follows: 

- a 
(6.j &) + - ((24; C;) - u; c;) - - ((u; 5;) - u; g;); (3.7 h )  ax, 8x3 axj 

- a a -- 

a a +- (&&-(c;u;)) -- (U;C;--(u;C;)). (3.7c) 
axi axj 

These equations can be further simplified. 
It should be recognized that the coherent structure is not really a perturbation super- 

imposed on the time-mean flow. When the structure is present, the motion is entirely 
due to the structure. Thus the classical triple decomposition (2.t)  should be discarded 
in favour of a double decomposition, i.e. 

L,(x, t )  = <&) (x, t )  + C;(X, t )*  (3.8) 

Phase average of the vorticity equations after this substitution yields 

The left-hand side represents the rate of change of the phase-average vorticity of a 
fluid element moving in the phase-average flow field. The first term on the right-hand 
side represents coherent vorticity augmentation through stretching by the coherent 
motion; the second term represents the coherent vorticity diffusion and the last term 
is the destruction or production of coherent vorticity by the background turbulence 
field. 

Simple reaeoning can be used to simplify equation (3.9). If R is the characteristic 
size of the structure, then 

assuming that (u) N V,; (6) N U,/R; u' N u;  6' N u/h and that u' and y' are well 
correlated; h is the Taylor microscale, i.e. ((au;/axi) (au; /ax,)> = u2/h2. Since h < R, 
the ratio of the first to the second terms in (3.10) is the Reynolds number U, R/v which 
ie large. That is, the coherent structure dynamics is essentially inviscid. Viewed 
another way, the ratio of the structure transit time rt - R / U, to the vorticity diffusion 
time ra N R2/v, i.e. rt/ra = v/U,R is very small. Thus, viscous diffusion is too slow to 
be important in the coherent structure dynamics. 
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The ratio of the first term to the third in (3.10) is ( U ; / U ~ )  (h/R).  However, in the jet 
and free shear layer u N U ,  while h < R. Thus, the vortex stretching term is com- 
paratively weaker. (On the basis of physical arguments, the axisymmetric structure 
will have negligible vortex stretching except during the pairing event when there are 
noticeable changes in the voltex toroid diameter.) Thus, 

Since we are interested in the (Q) = s2 component only, 

Bia a - = - ( (qu; ) - (u;[ ; ) ) .  
Dt ax, 

(3.1 1 b)  

It ia clear that the correlation between velocity and vorticity fluctuations is the 
principal contributor to the production or destruction of phase-average vorticity. The 
coherent structure organizes the background fluctuation field such that the otherwise 
random vortex forces u x C are organized to strengthen/dilute the structure coherent 
vorticity. For a flow whose phase average field is two-dimensional, it  is easy to show 
that 

(3.12) 
a 

-<urvr) = < ~ ? r L ) - < v r C d *  aY 
Neglecting gradients of dynamic pressure, equation (3.11 b )  becomes 

(3.13) 

Thus a t  any point where the phase average of the background Reynolds stress (u,v,) 
has a minimum in x and maximum in the radial direction, there will be maximum 
decrease of phase-average vorticity. That is, at  the saddle points in the (u,v,) contours, 
the effect of the background turbulence on the destruction of the coherent vorticity 
will be the maximum. Figure 35 shows that the peaks of phase-average vorticity are 
located near the saddle points of the (urvr) contoure, especially in regions I11 and IV. 

The right-hand side of (3.13) estimated through graphical differentiation of (u,v,} ( x )  
and (urv,) (y) through the saddle point accounts for the observed peak vorticity drop 
from region I11 to IV. Figure 12 shows that this drop 6Q is about - 2*0fp ( = 140s-l). 
Since the time elaspsed St between these two regions is 29 ms, 

BQ/Dt  FZ SQ/St E 4800~-~. 

The estimated value of the right-hand side of (3.13), taken as an average of the values 
determined from graphical differentiation a t  these two regions, is - 4500 s - ~ .  This 
amazing agreement should not be taken too seriously because of the large uncertainty 
in the computation of the second derivatives, but is a reasonable confirmation of the 
role of (u, v,) via (3.13). 

3.9. Circumferential correlations 

In  an attempt to understand further the transition process, circumferential correlation 
(both time-mean and phase-locked) measurements were made with two single-wire 
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FIGURE 37. Time-mean circumferential correlation i?,, v8. a; R e D  = 32000, 7.62 cm jet; v,  
excited; (a) excited at L%D = 0-85. 
x / D  = 1.5 ( y / D  = 0.33); 0, x / D  = 2.8 ( y / D  = 0.40); 0, x / D  = 4.13 ( y / D  = 0.47). (a) UU- 

probes: probe 1 was held a t  a certain radius 7, while probe 2 was moved azimuthally 
(in a) keeping its orientation and radial displacement 7 the same in a plane perpendi- 
cular to the jet axis. The azimuthal traverse of the second probe was facilitated by a 
probe holder with an arm of variable radial displacement, the holder being rotated 
about an axis aligned with the jet axis. Alignment of the axes was done by trial until 
constant readings of U a t  any a were obtained. Measurements were made at three 
x stations, x /D = 1.5, 2.8 and 4.13, a t  the radial locations y / D  = 0.33, 0.40 and 0.467, 
respectively. The choice of these three radii was based on the core size of the vortices at 
these locations, so that the ratio of the vorticity encountered by the probe a t  the phase 
of the measurement and the core peak vorticity was approximately the same at  each 
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location (see figures 1 1  b, c ,  d ) .  Values of UIU, a t  these three locations were about 0.9, 
0.8 and 0.6, respectively. 

Figure 37 ( a )  shows the conventional, two-point streamwise velocity correlation 
coefficient Ruu (i.e. R,,(O, 0, a)) as a function of angular separation a for the unexcited 
jet at Re, = 32000. At x / D  = 1.5, the correlation drops gradually with a and a t  
a = 180" it is about 0.4. Thus, the randomly occurring structures in an unexcited jet 
are initially circumferentially well-correlated, The drop-off of guu is much faster at 
both the later axial stations; a t  x / D  = 4.13, the circumferential correlation is lost a t  
about a = 35". These correlation results at x / D  = 2.8 and 4- 13 agree qualitatively with 
those of Bradshaw, Ferriss & Johnson (1964). The higher values of Ruu at x / D  = 4.13 
(for a 5 35") than those a t  x / D  = 2.8 can be traced to the dependence of RUu on r 
(radius). For a fixed x and a fixed a, Ruu is found to be a function of r ,  Ruu being least 
in the high shear regions. Measurements by Lau (1978, private communication) show 
similar dependence of RUu on r .  

The time-mean circumferential correlation increases remarkably when the jet is 
excited at St, = 0.85 to induce stable vortex pairing in the jet-column mode (figure 
37b). At x / D  = 1.5, almost perfect correlation is observed all around the circum- 
ference. This strong axisymmetry indicates that the slight jitter in the passage of 
vortex 1 observed a t  x / D  = 1.5 ( 9  3.3), is probably in its arrival time rather than due 
to 'wobbly ' motions associated with the circumferential lobe structure. Substantial 
circumferential correlation Ruu is still maintained a t  x / D  = 2.8, where the paired 
vortex is found to have already undergone transition. Notice for this location that 
about 35 % drop in Ruu occurs within only about 20" while, for the rest of a range, Ruu 
is essentially constant. The fast drop of Ruu within a short angular distance can be 
ascribed to the small-scale random fluctuations superimposed on the nearly axisym- 
metric coherent structure, the latter producing the flat Ruu variation for the rest of the 
circumference. Thus, the .Euu data are consistent with the inference made that the 
vortices undergo transition near the end of the pairing event. The &(a) variation at 
x / D  = 4.13, for St, = 0.85 is comparable to that for St, = 0, indicating significant 
weakening of the coherent structure by the end of the potential core, even though 
better organized initially by the controlled excitation. 

In  order to obtain information on the instantaneous vortical structure, it is necessary 
to measure phase-locked circumferential correlation a t  specific configurations of the 
coherent structures. This correlation coefficient is defined as follows: 

(3.14) 

where uI and u2 are departures from the local time-mean axial velocities. A third probe 
was used a t  x / D  = 1.5, r / D  = 0 in order to obtain the triggering signal (92.2a) .  
Variation of <Ruu) together with measured U and (u) as functions of the phase delay 9 
are shown in figure 38 for fixed angular separation of a = 90". Notice the strong 
periodic variation of {u) caused by the periodic passage of the vortices. For a fixed a, 
<Ruu) clearly shows strong dependence on the phase 9. Such behaviour should be 
expected. For example, around the phases where (u) (4) and U intersect each other 
(i.e. at, 9 90" and 270"), the product term u(a = 0") u(a = 90") would be nearly equal 
to zero since u is zero a t  all a, while this term will be the maximum a t  phases # E 0 and 
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4 (deg.1 
FIGURE 38. Variations of (u) /U,  (-O-), (u",>t/U, (... e...) and the phase-average circum- 

ferential correlation (Ruu) (-n-) with the phase 4;  x / D  x 2.8, y / D  w 0.47, a w 90". 

FIGURE 39. (Ruu) va. a for the phase q5 = 0 in figure 38. Symbols 
represent the same flow conditions as in figure 37. 
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180". The probe location with respect to the vortices and the corresponding time trace 
of the hot-wire signal is shown schematically in the inset in figure 38. The difference 
between <Ruu) values a t  g5 N 0 and g5 N_ 180" is due to the fact that the radial position 
of the measurement hot wire was such that at  g5 = 0" or 360" it  is inside the vortex 
core which is turbulent a t  this x location, while a t  q5 E 180" it is in the potential flow 
between the two vortical structures. 

The circumferential correlation (Ruu), a t  the phase g5 = 0 corresponding to the data 
in figure 38, are shown in figure 39 for x / D  = 1.5, 2.8 and 4.13. The radial locations a t  
each x are the same as in figures 37 (a )  and ( b ) .  Note that this particular phase corre- 
sponds to the radial configuration of the two pairing vortices a t  x / D  = 1.5 and thus 
show the circumferential correlations on the inner side of vortex 1 in region I1 as well 
as those on the inner sides of the paired vortices in regions I11 and I V  (see figures 
1 1  b,  c,  d ) .  Figure 39 clearly shows that vortex 1, which has been squeezed inside vortex 
2 a t  x / D  = 1.5, still maintains almost perfect circumferential correlation. For region I V  
(i.e. at  x / D  N 4.13), the rapid drop of {R,,) with a suggests almoet complete breakdown 
of the well-defined ring structure found at  earlier x stations. Note that the decrease of 
<Ruu) with a is slightly less than that of Ruu (figure 37b). 

The variation of (RUJ (a)  at x / D  = 2.8 shows a distinct hump a t  around a N 40" 
confirmed by repeated measurements. This hump can probably be explained by an 
organized three-dimensional structure on the inner periphery of the paired vortex at  
this location. Smoke visualization experiments indicated that the paired vortex a t  
this location is transitional, resulting in rapid diffusion of the smoke traces, and being 
associated with azimuthal jet-like ejections radiating outwards in this general area. 
It is possible that, like the circumferential lobe structure that develop in impulsively 
created vortex rings (Widnall 1975; Saffman 1978), the attainment of three- 
dimensionality by the vortices here occurs through some organized core instability 
of the ring vortices. In a circular jet, the transition of the ring vortices through circum- 
ferential instability 'waves' has been observed visually among others by Yule (1978), 
Davies & Baxter (1978) and Browand & Laufer (1975). Yule observed evolution of the 
lobe structure essentially a t  the same x /D location as found here, i.e. x / D  2: 3. It 
appears from the present data that the breakdown of the paired vortex is also associated 
with the development of such azimuthal lobe structures. The number of organized 
azimuthal lobes, since the hump occurs a t  about 40", would be about 9. 

The question naturally arises as to why only one hump appears instead of 4-5 humps 
over the a span of 180'. This is easily reconciled by the fact that a circumferential lobe 
structure associated with the vortex transition cannot be expected to be exactly 
repeatable from vortex to vortex. The spatial and temporal dispersions in the lobe 
structure as well as the jitter in the vortex arrival time together with the super- 
imposed turbulence would act to damp out the peaks in {Ruu) (a )  at large a. Thus, the 
second hump is quite likely too small to be distinguished from the data scatter. Note 
that any azimuthal rotation of the vortices (Widnall 1975) and jitter in the number of 
lobes would also affect these measurements. In  fact, in order to get repeatable data, 
the number of realizations used in obtaining <RUJ had to be as high as 4000 at each a. 
The uncertainty in the <Ruu) data was found to be 5 % on the basis of repeated tests 
while keeping the measurement probes a t  fixed locations. 
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4. Concluding remarks 
Coherent ring-like vortical structures could be educed as far downstream as the end 

of the potential core. The paired vortex structure, however, becomes weaker with 
increasing downstream distances and no attempt was made in this study to educe the 
structure farther downstream. It is believed that by elimination of the jitters in the 
sampled data by alignment through cross-correlation (Sokolov et al. 1980; Hussain 
et al. 1980) or some other conditional data acquisition, the coherent structures can be 
traced farther downstream. How far these structures can be tracked is presently an 
open question; this is being studied by our group. 

During the pairing process, shortly after passing through the radial configuration, 
the faster-moving inner vortex undergoes an explosive transition to turbulence before 
losing its identity through merger with the outer vortex. This observation was first 
made from flow visualization and is supported by the loss of time-mean circum- 
ferential correlation EUu(a) between regions I1 and 111, by the rapid decrease of the 
peak vorticity of the inner vortex as it passes through the radial configuration, and by 
the significant spread of the phase-average turbulence intensity contours from phase 2 
to phase 3 of the pairing event. Controlled excitation, though successful in organizing 
the initial roll-up of the coherent structure near the jet exit, and retaining azimuthal 
coherence even after transition following the pairing event, appears ineffective in 
retaining the organization at the end of the potential core. Phase-average circum- 
ferential correlation {R,,) (a)  suggests that the breakdown of the initially organized 
coherent structure occurs through large-scale azimuthal lobe structures similar to 
those found in the instability of a thin laminar vortex ring. The vorticity contours show 
that the ‘braid ’ between two vortex rings does not :ontain significant amounts of 
vorticity. The distortions of the measured vorticity contours or the computed pseudo- 
stream-functions on the low-speed side have been shown to be due to the phase jitter 
of the structure and signal rectification by the hot wire during instants of flow reversal. 

Up to about x / D  = 3, the measured correlation(upvp) (due to the coherent structure) 
is found to be much larger than (u,v,) (due to the background turbulence), indicating 
that large-scale transport by the vortical structures dominates the flow dynamics. In 
region IV, i.e. about 4 diameters downstream, values of (u,v,) and {up up) are found to 
be comparable, indicating that a major role in transport is played by the superimposed 
random field. However, the jitter in the arrival times of the paired vortex a t  this 
location is believed also to contribute to an apparent reduction in (upup)  and a 
corresponding increase in (u,.~,). The coherent structure organizes the random back- 
ground turbulence such that the background turbulence Reynolds stress is most 
effective in modifying the phase coherent vorticity. The regions of peak phase-average 
vorticity especidly following the transition of the vortical structures have been shown 
to occur in regions of ‘saddle points ’ of (U~V,.). Simple analytical xeasoning shows that 
such saddle points of (u,v,.) should contribute to the destruction of coherent structure 
vorticity . 

The transverse transport of u momentum by the coherent structures, as inferred 
from a ‘zone-average correlation ’, is found to be much larger during the pairing process 
than in regions where a single vortex is situated. This observation qualitatively sup- 
ports the claim of Browand & Wiedman (1976) and also confirms the conclusionsdrawn 
earlier from the time-average cum data (see I). While Browand & Wiedman computed 
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‘average’ correlation coefficients by a fixed probe over the time span extending over 
the passage of the vortical structures, the present study involves correlations over the 
spatial extent (in x )  of the vortical structures at fixed times (phases) and is thus 
independent of the Taylor hypothesis. The present study further shows that, such 
‘ zone-average correlation ’ is much lower for single vortical structures, both before 
and after a pairing stage and that the coherent-structure Reynolds stress resulting 
from structure interaction is much larger a t  an earlier rather than a later phase of the 
pairing process. 

Contours of phase-average coherent Reynolds stress show alternate regions of 
positive and negative values. Thus negative production - which contradicts gradient 
transport hypotheses and turbulence modelling theories - can be explained by coherent 
structure motions and their interactions. 

For characterizing the coherent structure in a turbulent shear flow it appears that 
the double decomposition, i.e. f = (f) + f‘ (Hussain 1977) is more meaningful than 
the triple decomposition (Hussain & Reynolds 1970; Cantwell & Coles 1978, private 
communication). 

To what extent are these detailed data on structures induced by controlled excita- 
tion related to the practical situation ? It is our contention that the controlled excita- 
tion does not create an artificial structure but triggers a naturally occurring one. Thus 
the coherent-structure evolution recorded here should not be drastically different from 
that of natural structures, especially when they undergo pairing. (In fact, the stream- 
line pattern, aspect ratio and spacing of the structures following the pairing agree 
quite well with those of the naturally occurring structures (Yule 1978). Yule also 
found that no pairing occurred beyond x / D  z 2.) The controlled excitation enabled 
us to phase-lock onto the structure and derive its characteristics in such details that 
are unlikely to be possible with the naturally occurring structures. The eduction of 
the naturally occurring structures is complicated by not only the large dispersions 
in shapes, sizes, orientations and interactions but also the large radial variations in 
the organization of the structures, their trajectories and convection velocities (Lau 
& Fisher 1975; Bmun 1977; Yule 1978; Lau 1978, private communication). 

Apart from understanding the flow physics in the near flow field of a circular jet, 
another goal of this study was to obtain basic information regarding the quasi- 
deterministic characteristics of the coherent structures and their interactions with 
the hope that an appropriate (random) distribution of these structures may produce 
a realistic model of shear-flow turbulence. Data presented in this paper should be 
utilized in theoretical efforts in that direction. 

We are grateful to the Office of Naval Research and the N.A.S.A. Langley Research 
Center for financial support, to Professor L. S. G. Kovasznay for a careful review of 
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FIGURE 9. ( a )  Smoke-streak pictiire of  the flow. ( b )  Explanation for (u,) ( T )  

induced by the rolled-up vortex in region I. 

(Facing p .  544) 
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FIGURE 15. Dual-channel oscilloscope traces from a cold-wire-hot-wire pair sensor located a t  
x / D  = 0.6 at the transverse location where U/U,  2 0.10. Upper trace is the temperature signal 
(inverted), and the lower trace is the u signal. 
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